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Abstract In this work we focus on the problem of approximating multiple roots of
nonlinear equations. Multiple roots appear in some applications such as the com-
pression of band-limited signals and the multipactor effect in electronic devices. We
present a new family of iterative methods for multiple roots whose multiplicity is
known. The methods are optimal in Kung–Traub’s sense (Kung and Traub in J Assoc
Comput Mach 21:643–651, [1]), because only three functional values per iteration are
computed. By adding just one more function evaluation we make this family deriva-
tive free while preserving the convergence order. To check the theoretical results, we
codify the new algorithms and apply them to different numerical examples.

Keywords Iterative methods · Nonlinear equations · Multiple roots · Convergence
order · Efficiency

1 Introduction

Solving nonlinear equations is an important problem in applied mathematics and engi-
neering. In this work, we apply iterative methods for finding a zero of a continuously
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differentiable function f : R −→ R that is, a solution α of the nonlinear equation
f (x) = 0.

In the case of simple roots, many robust and efficient methods have been proposed
with high convergence order (see [2–4]).

Here we focus in the case of a root α of multiplicity m > 1, namely, f (α)

= 0, f (k)(α) = 0 for k = 1, . . . , m − 1 and f (m)(α) �= 0. It is well known that
the convergence order of iterative methods decreases in the presence of a multiple
root. In this sense, modifications in the iterative function can improve the behavior
of the method. Newton’s method recovers the second order convergence for multiple
roots, [5], with the modification given by

xk+1 = xk − m
f (xk)

f ′(xk)
.

Recently, some authors [6–8] have obtained higher order iterative methods for multiple
roots when the multiplicity is known in advance.

Our aim in this study is, first of all, to present some new efficient iterative methods
for approximating multiple roots. For this purpose we introduce some parameters in
optimal iterative methods for simple roots and use the relations deduced from the fact
of being a multiple root for getting the value of the parameters that re-establishes the
convergence order.

Secondly, we are interested in obtaining derivative free iterative methods for mul-
tiple roots. In the literature, some high order methods avoiding the use of derivatives
have been presented for the case of simple roots, [9–13]. To our knowledge, the use
of divided differences for approximating the derivative in the case of multiple roots
has not been published yet. We use suitable divided differences, showing that they
preserve the convergence order. To check the theoretical results, we codify the new
algorithms and apply them to different numerical tests.

The determination of multiple roots is of interest in some branches of applied sci-
ences. For example, in [14] the authors show that the zeros of the derivative of a
band-limited signal that goes through an unknown singularity can be useful in identi-
fying and correcting it. In particular, they prove that the the bandwidth of a signal can
be compressed by a ratio of 1/n if and only if the signal has roots of multiplicity n.

Multipactor is an undesirable RF breakdown that may occur in the high power
microwave devices working under the vacuum condition [15]. A particular scenario
where the multipactor appears is inside a parallel plate waveguide. Between these two
plates, there exists an electric field with an electric potential difference which produces
the electron movement. In the study of the electron trajectories, a case of interest is
when the electron reaches a plate with zero speed. In this case, the function distance
from the electron to the plate presents a zero of multiplicity 2.

Nonlinear systems also appear in Chemistry, for example in the study of stability
of chemical reactions. Here we deal with the solution of Van der Waals’ equation for
the determination of the volume of a gas in the particular case when the solutions are
multiple.

The rest of the paper is organized as follows. In Sect. 2 the construction of the family
is explained and the convergence result is proved. Derivative free iterative methods
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are stated in Sect. 3. In Sect. 4 we compare the new methods with an existing fourth
order method by using example equations with multiple roots. Section 5 is devoted to
the conclusions.

2 Developing new iterative methods

In [16], we have presented new families of iterative methods for nonlinear systems.
Here we use the same scheme, but now the determination of parameters will be done
assuming that the root is of multiplicity m. With the notation for the unidimensional
case, the proposed family can be written as:

yn = xn − b
f (xn)

f ′(xn)
,

xn+1 = xn −
(

s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)2
) f (xn)

f ′(xn)
, (1)

where h(xn, yn) = f ′(yn)
f ′(xn)

, and b, s1, s2, s3, s4 ∈ R.

Now we determine the value of these real parameters in order to obtain the maxi-
mum efficiency. According to Kung–Traub’s conjecture, [1], as only three functional
evaluations per iteration are used, the optimal order will be 4. Consider the Taylor’s
expansion of f (xn) around the solution α

f (xn) = f (m)(α)

m! em
n

(
4∑

i=0

ci e
i
n + O

(
e5

n

))
, (2)

where en = xn − α and ci = m!
(m+i)!

f (m+i)(α)

f (m)(α)
, i ≥ 0. Then, the derivative is

f ′(xn) = f (m)(α)

m! em−1
n

(
4∑

i=0

(m + i)ci e
i
n + O

(
e5

n

))
. (3)

So, the error equation for a Newton’s step can be written as

ên = yn − α = en − b
f (xn)

f ′(xn)
=

(
1 − b

m

)
en + bc1

m2 e2
n − b

(
(1 + m)c2

1 − 2mc2
)

m3 e3
n

+ b
(
(1 + m)2c3

1 − m(4 + 3m)c1c2 + 3m2c3
)

m4 e4
n + O

(
e5

n

)
,

and then, f ′(yn) takes the form

f ′(yn) = f (m)(α)

m! êm−1
n

(
4∑

i=0

(m + i)ci ê
i
n + O

(
ê5

n

))
.

By using Mathematica, we compute h(xn, yn) and h(yn, xn) in terms of en obtaining
the following error equation for (1):
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en+1 = A1en + A2e2
n + A3e3

n + A4e4
n + O(en)5, (4)

where

A1 = 1 − s1 + s4μ
2−2m + s2μ

1−m + s3μ
−1+m

m
,

A2 =
(

m2s1 + s4μ
2−2m + s2μ

1−m + s3μ
−1+m

− b(b − 2m + bm)μ−2m
((

−2 + 2b

m

)
s4 − s2μ

m + m2s3μ
3m

(b − m)2

))
c1

m4

and μ = 1 − b
m .

Now, in order to annihilate the terms of first and second order in (4), we solve the
system A1 = 0, A2 = 0 and find the parameters s1 and s2:

s1 = − μ−1−2m

b(b − 2m + bm)

(
μ2+2m

(
−m2s4μ

2−2m − m2s3μ
−1+m

+ 2b(b − m)(b − 2m + bm)s4μ
−2m

m
+ bm2(b − 2m + bm)s3μ

m

(b − m)2

)

+
(
−2bm + b2(1 + m) + m2μ

) (
s4μ

3 + μ2m (−mμ + s3μ
m)))

, (5)

s2 = μ−m

bm(−b + m)2(b − 2m + bm)

(
2b5(1 + m)s4 + 6b3m2(3 + m)s4

−2b4m(5 + 3m)s4 − m6μ2m + 2bm4
(

2s4 + μ2m (
m − s3μ

m))

+ b2m3
(
−2(7 + m)s4 + μ2m (−m + s3μ

m + ms3μ
m)))

. (6)

By substituting these values in (4), we have

en+1 = (k(b − m)4m5(−2m + b(2 + m))μ2mc2 + B)e3
n + O

(
e4

n

)
,

with k, B ∈ R. So, in order to eliminate the coefficient of c2 in the term of third order,
we impose the condition b = 2m

2+m , and then one has μ = m
2+m , so that the coefficient

of e3
n becomes

A3 = − 2μ−2m

m6(2 + m)4

(
−8m4μ2m − 12m5μ2m − 6m6μ2m − m7μ2m + 64s3μ

3m

+ 96ms3μ
3m + 48m2s3μ

3m + 8m3
(

s4 + s3μ
3m

))
c2

1.

We obtain s3 in order to annihilate this term, obtaining

s3 = m3μ−3m
(−8s4 + 8mμ2m + 12m2μ2m + 6m3μ2m + m4μ2m

)

8(2 + m)3 . (7)
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Finally, substituting (5–7) into (4), the error equation of the family of iterative
methods defined by (1) is

en+1 = 1

3m5(2 + m)5

((
128m + 288m2 + 352m3 + 368m4 + 312m5 + 178m6

+ 62m7 + 12m8 + m9 − 192s4

)
c3

1 − 3m4(2 + m)5c1c2

+ 3m6(2 + m)3c3

)
e4

n + O
(

e5
n

)
, (8)

and so, it has fourth convergence order. Then, we have proved the following result:

Theorem 1 Let f : R −→ R be a sufficiently differentiable function in an open
interval I containing α, that is a root of multiplicity m of the equation f (x) = 0. Then,
for an initial approximation sufficiently close to α, the family of methods defined by (1)
where b = 2m

2+m and s1, s2 and s3 take the values given by (5), (6) and (7), respectively,
has fourth order of convergence for any s4 ∈ R. The error equation of the family is
given by (8).

3 Derivative free methods for multiple roots

In order to avoid the use of the use of derivatives we propose the approximation by
divided differences given by:

f ′(xn) ≈ f [zn, xn] = f (zn) − f (xn)

zn − xn
, (9)

where zn = xn + f (xn)q with q ≥ 1. In [17], the authors prove that approximating
the derivative by (9) the convergence order of many iterative methods for simple roots
remains invariant.

Our aim here is to extend this technique to the case of multiple roots. Then, replacing
in the family (1) the derivatives with divided differences, one obtains the derivative
free family given by:

ỹn = xn − b
f (xn)

f [xn + f (xn)q , xn]
x̃n+1 = xn −

(
s1 + s2h̃(ỹn, xn) + s3h̃(xn, ỹn) + s4h̃(ỹn, xn)2

) f (xn)

f [xn + f (xn)q , xn]
(10)

where h̃(xn, ỹn) = f [ỹn+ f (ỹn)q ,ỹn ]
f [xn+ f (xn)q ,xn ] . We can prove the following result:

Theorem 2 Let f : R −→ R be a sufficiently differentiable function in an open
interval I containing α, that is a root of multiplicity m of the equation f (x) = 0. Then,
for an initial approximation sufficiently close to α, the family of methods defined by
(10) with s4 ∈ R, and the same values of the parameters b, s1, s2 and s3 that have been
defined in (1) has the following error equation:
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ẽn+1 = en+1 + O
(
eqm

n
)

(11)

where en+1 is the error equation obtained in (8) for the method that uses derivatives
given by (1).

Proof It is well known that the forward approximation for the derivative is of order
h, that is:

f [x, x + h] = f (x + h) − f (x)

h
= f ′(x) + O(h),

and consequently for the inverse operator we have:

1

f [x, x + h] = 1

f ′(x)
+ O(h). (12)

But, specifically by the corresponding Taylor’s development we can express:

f [x, x + h] = f (x + h) − f (x)

h
= f ′(x) + f ′′(x)

2
h + O(h2),

then, for multiple roots, setting x = xn and h = f (xn)q by taking into account (2), we
have h = O

(
eqm

n
)

and f ′′(xn) = O
(
em−2

n

)
so, we get an approximation for f ′(xn)

verifying:

f [xn + f (xn)q , xn] = f ′(xn) + O
(

e(q+1)m−2
n

)
(13)

and by (12) we obtain:

1

f [xn + f (xn)q , xn] = 1

f ′(xn)
+ O

(
eqm

n
)
, (14)

then, by using (2) we have:

f (xn)

f [xn + f (xn)q , xn] = f (xn)

f ′(xn)
+ O

(
e(q+1)m

n

)
. (15)

This fact allows us to establish the relation between the first step in (1) and (10) by
using (12) and (13) one has:

ỹn = xn − b
f (xn)

f [xn + f (xn)q , xn] = xn − b

(
f (xn)

f ′(xn)
+ O

(
e(q+1)m

n

))

= yn + O
(

e(q+1)m
n

)
,

and consequently f (ỹn) = f (yn) + O
(

e(q+1)m
n

)
and f ′(ỹn) = f ′(yn)

+ O
(

e(q+1)m
n

)
.

Now, we analyze the function h̃(xn, ỹn) appearing in the second step of (10), obtain-
ing that:
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h̃(xn, ỹn) = f [ỹn + f (ỹn)2, ỹn]
f [xn + f (xn)2, xn] =

(
f ′(ỹn) + O

(
e(q+1)m−2

n

)) (
1

f ′(xn)
+ O

(
eqm

n

))

=
(

f ′(yn) + O
(

e(q+1)m−2
n

)) (
1

f ′(xn)
+ O

(
eqm

n

))
= f ′(yn)

f ′(xn)
+ O

(
eqm−1

n

)

= h(xn, yn) + O
(

eqm−1
n

)
,

Analogously, we have the following:

h̃(ỹn, xn) = h(yn, xn) + O
(

eqm−1
n

)
. (16)

Now, analyzing the relation between the second step in (1) and in (10), by using
(15) and (16) we get:

ẽn+1 = x̃n+1 − α = xn − α

−
(

s1 + s2h̃(ỹn, xn) + s3h̃(xn, ỹn) + s4h̃(ỹn, xn)2
) (

f (xn)

f [xn + f (xn)q , xn]
)

= xn − α −
(

s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)2 + O
(

eqm−1
n

))

×
(

f (xn)

f ′(xn)
+ O

(
e(q+1)m

n

))
= xn+1 − α + O

(
eqm

n
) = en+1 + O

(
eqm

n
)

= O
(

e4
n

)
+ O

(
eqm

n
)

(17)

where we have applied that en+1 is of order 4, with the error equation obtained in (8).
�	

Note: We conclude that if q = 1 the derivative free iterative methods, (10), preserve
the convergence order if m ≥ 4 however for q ≥ 2 the convergence order is maintained
for all m ≥ 2.

That is for for problems with multiple roots with multiplicity m ≥ 4 approximating
the derivative by

f [x, x + f (x)] = f (x + f (x)) − f (x)

f (x)
(18)

the iterative methods presented reach convergence order four but, if the multiplicity
is m < 4 for preserving the convergence order we use:

f [x, x + f (x)2] = f (x + f (x)2) − f (x)

f (x)2 (19)

4 Numerical tests

In this section, we choose specific values of the parameter s4 in order to apply the
methods to some examples. Remember the general expression of the family of iterative
methods:
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yn = xn − b
f (xn)

f ′(xn)
,

xn+1 = xn −
(

s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)2
) f (xn)

f ′(xn)
, (20)

where h(xn, yn) = f ′(yn)
f ′(xn)

, b = 2m
2+m = 2μ, and s1, s2 and s3 are given by (5), (6)

and (7), respectively. The simplest element of the family is obtained for s4 = 0. The
values of the parameters for this method, that will be called MR0 are given by:

s1 = −1

4
m(−4 + 2m + 3m2 + m3),

s2 = 1

8
mμm(2 + m)3,

s3 = 1

8
m4μ−m .

For s4 = 1 we obtain the method called MR1 whose values for the parameters are:

s1 = m
(
16 − 16m2 − 18m3 − 7m4 − m5 + m

(
8 + 12μ−2m

))

4(2 + m)2 ,

s2 = 1

8
μ1−m

(
−24 + (2 + m)4μ2m

)
,

s3 = m3μ−3m
(−8 + m(2 + m)3μ2m

)

8(2 + m)3 .

The corresponding derivative free iterative methods obtained from (10) for these
values of the parameters are denoted by DF1

0 and DF1
1 respectively when we use the

divided difference given by (18) and DF2
0 and DF2

1 when the derivative is approximated
by (19).

These methods will be compared with a fourth order method introduced in [18] that
we denote by MRSh, and its derivative free versions by DF1

Sh and DF2
Sh. The expression

of the method MRSh is

xn+1 = xn − a1w1(xn) − a2w2(xn) − a3
w2(xn)2

w1(xn)
,

where w1(xn) = f (xn)

f ′(xn)
, w2(xn) = f (xn)

f ′(yn)
, yn = xn − βw1(xn) and

β = 2m

2 + m
,

a1 = 1

8
(m3 − 4m + 8),

a2 = −1

4
m(m − 1)(m + 2)2

(
m

2 + m

)m

,
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a3 = 1

8
m(m + 2)3

(
m

2 + m

)2m

.

We perform the calculations in Matlab (2011b) using variable precision arithmetic
with 2,000 digits of mantissa. The stopping criterion is that the distance between
consecutive iterates, |xn+1 − xn|, is less than the tolerance 10−50 or that the function
value is zero for the working precision. To measure the speed of convergence we use
the approximated computational convergence order (see [13]),

AC OC = log(|xk+1 − xk |/|xk − xk−1|)
log(|xk − xk−1|/|xk−1 − xk−2|) .

In the study of the multipactor effect, the trajectory of an electron in the air gap
between two parallel plates is given by

x(t) = x0 +
(

v0 + e
E0

mω
sin(ωt0 + α)

)
(t − t0)

+ e
E0

mω2 (cos(ωt + α) − cos(ωt0 + α)) (21)

where e and m are the charge and the mass of the electron at rest, x0 and v0 are the
position and velocity of the electron at time t0 and E0 sin(ωt + α) is the RF electric
field between the plates.

Van der Waals’ equation

(
P + an2

V 2

)
(V − nb) = n RT

explains the behavior of a real gas by introducing in the ideal gas equations two
parameters, a and b, specific for each gas. The determination of the volume V of the
gas in terms of the remaining parameters requires the solution of a nonlinear equation
in V .

PV 3 − (nbP + n RT )V 2 + an2V − an2b = 0. (22)

Given the constants a and b of a particular gas, one can find values for n, P and T ,
such that this equation has a triple root.

The first equation we consider is a particular case of (21) where the parameters
have been normalized in order to deal with a simpler expression. The second one is
an example of (22) where the root is triple. The next three equations appear in [18].
Equation f4 is the particular case of (x −1)n(x −2)(x −3) for n = 3. For bigger values
of n, the methods reach the desired convergence order, but their behaviors are very
similar. The last equation contains a parameter that allows to obtain roots of arbitrary
multiplicity. Two starting points are considered for each equation.

f1(x) = x + cos(x) − π/2, α = π/2, multiplicity: 3
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Table 1 Convergence to the root α = π/2 of multiplicity 3 of equation f1

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh 1 4 4.444e−121 5.0000 2 4 8.7412e−137 5.0000

MR0 4 4.5571e−121 5.0000 4 8.8695e−137 5.0000

MR1 4 4.5051e−121 5.0000 4 8.8106e−137 5.0000

DF2
Sh 1 4 6.0505e−084 4.9951 2 4 6.5556e−103 4.9994

DF2
0 4 6.0526e−084 4.9951 4 6.55e−103 4.9994

DF2
1 4 6.0516e−084 4.9951 4 6.5525e−103 4.9994

DF1
Sh 1 6 1.6353e−092 3.0000 2 6 3.753e−120 3.0000

DF1
0 6 1.4209e−092 3.0000 6 3.5811e−120 3.0000

DF1
1 6 1.5152e−092 3.0000 6 3.6587e−120 3.0000

f2(V ) = 0.98692V 3 − 5.18133V 2 + 9.06733V − 5.28927, α = 1.75, multiplicity: 3

f3(x) = x2 exp(x) − sin(x) + x, α = 0, multiplicity: 2

f4(x) = x5 − 8x4 + 24x3 − 34x2 + 23x − 6, α = 1, multiplicity: 3

f5(x) = (x2 − ex − 3x + 2)5, α 
 0.2575..., multiplicity: 5

f n
6 (x) = ex −

n−1∑
k=0

xk

k! , α=0, multiplicity: n.

The following tables show the starting points, the number of iterations, the latest
increment and the ACOC for each test example for the considered methods. We denote
by n.c. the cases where the method does not converge in 50 iterations.

The results for equation f1 are shown in Table 1. The methods using derivatives

have convergence order 5, instead of 4, because the coefficients ci = m!
(m+i)!

f (m+i)(α)

f (m)(α)

are 0 for i = 1 and i = 3, which annihilates the fourth order term in the error equation
(8). The derivative free methods DF2

Sh, DF2
0 and DF2

1 have the same convergence order
and methods DF1

Sh, DF1
0 and DF1

1 have convergence order 3, according to (17).
The three methods using derivatives reach the exact solution of the cubic equation

f2 in 2 steps, as shown in Table 2. The methods based on the divided differences
(19) have a convergence order higher than expected because of the annihilation of
some terms in the error expression (8). The derivative free methods introduced in this
paper converge in less iterations than the corresponding Sharma type methods in this
example.

Tables 3 and 4 show that the derivative free methods using the divided differences
(18) have only convergence order 2 or 3 for roots of the same multiplicity, whereas
the other methods, when converge, reach the fourth order convergence. The method
MRSh behaves exactly as the method MR1 for equation f3, as it can be observed in
Table 3, and so do their derivative free versions, DF1

Sh and DF2
Sh with respect to DF1

1
and DF2

1. This coincidence is not observed in the other examples.
For equation f5, the last three methods in Table 5 do not converge starting from the

considered points. Nevertheless, the first six methods show convergence of order 4.
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Table 2 Convergence to the root α = 1.75 of multiplicity 3 of equation f2

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh 0.51 2 0 − 3.1 2 0 −
MR0 2 0 − 3.1 2 0 −
MR1 2 0 − 3.1 2 0 −
DF2

Sh 0.51 22 1.6369e−102 6.0000 3.1 11 0 6.0000

DF2
0 11 8.2874e−307 6.0000 3.1 8 4.533e−163 6.0000

DF2
1 13 2.1711e−274 6.0000 3.1 9 2.0209e−295 6.0000

DF1
Sh 0.51 12 3.0051e−167 3.0000 3.1 13 3.7545e−230 3.0000

DF1
0 10 2.1863e−173 3.0000 3.1 10 4.1962e−142 3.0000

DF1
1 11 5.3937e−247 3.0000 3.1 11 1.4334e−177 3.0000

Table 3 Convergence to the root α = 0 of multiplicity 2 of equation f3

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh −0.5 5 5.7886e−056 3.9999 1 5 5.6183e−089 4.0000

MR0 5 7.6979e−055 3.9999 5 2.5526e−085 4.0000

MR1 5 5.7886e−056 3.9999 5 5.6183e−089 4.0000

DF2
Sh −0.5 6 1.1639e−175 4.0000 1 50 2.7752e−005 n.c.

DF2
0 6 2.1411e−174 4.0000 50 5.9491e−005 n.c.

DF2
1 6 1.1639e−175 4.0000 50 2.7752e−005 n.c.

DF1
Sh −0.5 9 1.0866e−096 2.0000 1 23 7.5738e−090 2.0000

DF1
0 9 1.7357e−096 2.0000 20 1.4299e−069 2.0000

DF1
1 9 1.0866e−096 2.0000 23 7.5738e−090 2.0000

Table 4 Convergence to the root α = 1 of multiplicity 3 of equation f4

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh 0 5 6.2209e−101 4.0000 1.4 5 3.1888e−069 4.0000

MR0 5 4.1156e−100 4.0000 5 6.006e−069 4.0000

MR1 5 1.7444e−100 4.0000 5 4.5062e−069 4.0000

DF2
Sh 0 50 1.2385e−005 n.c. 1.4 5 3.3419e−079 4.0000

DF2
0 50 7.4313e−005 n.c. 5 1.8929e−078 4.0000

DF2
1 50 4.4737e−005 n.c. 5 8.7317e−079 4.0000

DF1
Sh 0 47 3.9625e−052 3.0000 1.4 6 2.4365e−094 3.0000

DF1
0 18 2.7733e−144 3.0000 6 2.0752e−092 3.0000

DF1
1 22 1.5767e−068 3.0000 6 2.8003e−093 3.0000

In the last example, setting the multiplicity n = 6, all the iterations converge with
the desired order, as shown in Table 6.

The methods introduced in this paper present a similar performance as Sharma’s
method, or even better for the roots of higher multiplicity. In general the derivative free
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Table 5 Convergence to the root α 
 0.2575 of multiplicity 5 of equation f5

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh 0.15 4 8.1384e−099 4.0000 0.5 4 2.465e−075 4.0000

MR0 4 7.8378e−099 4.0000 4 2.4315e−075 4.0000

MR1 4 7.8777e−099 4.0000 4 2.436e−075 4.0000

DF2
Sh 0.15 4 6.7771e−053 4.0001 0.5 7 1.0756e−193 4.0000

DF2
0 4 6.7297e−053 4.0001 5 6.8349e−162 4.0000

DF2
1 4 6.7361e−053 4.0001 5 9.5844e−154 4.0000

DF1
Sh 0.15 50 1.1355e−010 n.c. 0.5 – – n.c.

DF1
0 50 1.4909e−008 n.c. – – n.c.

DF1
1 50 8.6736e−009 n.c. – – n.c.

Table 6 Convergence to the root α = 0 of multiplicity 6 of equation f 6
6

Method x0 n |xn − xn−1| ACOC x0 n |xn − xn−1| ACOC

MRSh −1.5 4 2.5849e−095 4.0000 1 4 9.8471e−100 4.0000

MR0 4 1.5916e−095 4.0000 4 6.7101e−100 4.0000

MR1 4 1.6571e−095 4.0000 4 6.9269e−100 4.0000

DF2
Sh −1.5 4 2.1691e−063 4.0001 1 4 6.2776e−095 4.0000

DF2
0 4 1.9775e−063 4.0001 4 6.5722e−095 4.0000

DF2
1 4 1.9928e−063 4.0001 4 6.5483e−095 4.0000

DF1
Sh −1.5 5 4.4796e−083 4.0000 1 5 3.3154e−175 4.0000

DF1
0 5 3.8242e−083 4.0000 5 3.1921e−175 4.0000

DF1
1 5 3.8745e−083 4.0000 5 3.2023e−175 4.0000

methods need slightly more iterations to converge, but then, they reach the predicted
multiplicity.

5 Conclusions

We have presented a family of iterative methods for solving nonlinear equations with
multiple roots and compared it with an existing method. The resulting methods are
optimal because they reach fourth order of convergence and only use three function
evaluations per step. Adding one functional evaluation, we obtain a family of derivative
free iterative methods. The selected methods of the new family compare well with the
fourth order method chosen as reference as we have seen in the numerical examples.
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